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Abstract

A hydrological ensemble prediction system, integrating a water balance model with en-
semble precipitation forecasts from the European Centre for Medium-Range Weather
Forecasts (ECMWF) Ensemble Prediction System (EPS), is evaluated for two Belgian
catchments using verification methods borrowed from meteorology. The skill of the5

probability forecast that the streamflow exceeds a given level is measured with the
Brier Skill Score. Then the value of the system is assessed using a cost-loss decision
model. The verification results of the hydrological ensemble predictions are compared
with the corresponding results obtained for simpler alternatives as the one obtained by
using of the deterministic forecast of ECMWF which is characterized by a higher spatial10

resolution or by using of the EPS ensemble mean.

1 Introduction

The forecast of future precipitation amounts is one of the most challenging tasks of
weather forecasting. In rainfall dominated hydrological regimes, it has long been the
main limitation to flood forecasting at the medium-range and beyond. The improvement15

of numerical weather prediction has been made possible by the increase of spatial res-
olution, the assimilation of new remote-sensed information, a better physic description,
all being sustained by a continuous growth of computing power. An alternative use
of these computing resources has consisted for several centres in the development
of ensemble methods. By perturbing the initial conditions and the model physics, a20

set of different weather scenarios are computed, all equally probable and providing
additional and valuable information on the uncertainty about the future precipitation
amounts. The Ensemble Prediction System (EPS) of ECMWF whose archives will be
used in this study, is operational since 1992 (Molteni et al., 1996).

To tackle the problem of uncertainty in streamflow forecasting, different probabilistic25

systems have been developed varying by the underlying theoretical framework as well
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as by the methods of computation (e.g. Day, 1985, Krzysztofowicz, 1999). The ad-
vent of skilful probabilistic precipitation forecasts in the medium-range from ensemble
prediction system (Buizza et al., 1999, Mullen and Buizza, 2001, Clark and Hay, 2004,
Hamill et al. 2004) has led to the development of ensemble precipitation- based stream-
flow forecasts. The use of EPS in a large-scale hydrological model has for instance5

been tested for selected historical flood events (de Roo et al., 2003, Gouweleeuw,
2005, Pappenberger et al., 2005).

Using six years of archived EPS forecast, Roulin and Vannitsem (2005) demon-
strated that the hydrological ensemble prediction has a positive skill at forecasting the
probability of high flow in two test catchments in Belgium. For winter, when large-scale10

precipitation prevails, this skill was found significant during the whole forecast range
of 9 days whereas during summer when convective precipitation dominates, this skill
vanishes after 6 to 8 days. The differences in skill between the two catchments were
put in relation with the differences in their responses to rainfall events. The changes in
spatial resolution of the Numerical Weather Prediction (NWP) in November 2000, from15

120 km to 80 km had a positive impact on the forecasts for winter at lead-time of 3 to 6
days.

In this paper, further insight on the quality of the hydrological ensemble predictions
will be given. The use of a simple cost-loss decision model will allow for the estimation
of the value of the risk of flood forecast necessary for decision-making. The skill and20

value of the ensemble will be compared with those of deterministic approaches. The
hydrological prediction system is described in Sect. 2. The methods to analyze the
probability forecasts are outlined in Sect. 3. The results obtained on two Belgian test
catchments using ECMWF archives are presented in Sect. 4. The conclusions are
drawn in Sect. 5.25
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2 Hydrological ensemble prediction system

This study is based on hydrological hindcast using the archived precipitation forecasts
from the ECMWF EPS since the date on which the T255 numerical weather prediction
(NWP) model was operational (21 November 2000). This NWP model has a horizontal
resolution of about 80 km. The EPS has been recently (1 February 2006) upgraded with5

a T399 NWP with ∼50 km resolution. Precipitation over a grid cell of the hydrological
model is given by the value predicted at the nearest grid point of the NWP model.
These forecasts start at 12:00 UTC for a period of 240 h and are archived with a 6-
h time step. For verification purposes, data from the dense (≈100 km−1) network of
daily precipitation observations over Belgium are used; these data are available at10

08:00 LT i.e. 07:00 UTC (or 06:00 UTC during the daylight saving period). Therefore,
in this study, the forecast day D+1 covers the EPS forecast period between +18 h to
+42 h. The last forecast day, D+9, corresponds to the forecast range from +210 h
to +234 h. Observed precipitation is interpolated over a grid cell of the hydrological
model by weighting measurements by its intersection with the Thiessen polygons of15

the neighbouring raingauges. The differences between the scales of the NWP and
the hydrologic model as well the possible biases in the precipitation forecasts deserve
more development than the direct use of the forecast data.

The hydrological model is adapted from the IRMB (Integrated Runoff Model – F. Bul-
tot) water balance model (Bultot and Dupriez, 1976, 1985). The model is implemented20

with grid cells of 7 km×7 km, and is complemented with a routing procedure based on
the width function (Naden, 1992). The conceptual scheme comprises a snow layer,
nine land covers with an interception layer and two soil reservoirs for each vegetation
cover, two underground reservoirs, and a unit hydrograph for simulating surface water
runoff. The IRMB model parameters have been reduced to ten adjustable parame-25

ters, and optimized using observed streamflow on a set of medium-sized catchments.
The first six parameters were obtained by flow separation and a deconvolution method
(Bultot and Dupriez, 1976). The remaining four were optimized using the SCE-UA algo-
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rithm (Duan et al., 1992). Empirical non-linear relationships have been found between
the values of the parameters and the physical catchment properties using the Nevprop
artificial neural network algorithm (Goodman, 1996). These relationships have been
used to estimate parameters for the entire hydrological model grid. Note that the high
uncertainty introduced in the regionalization procedure has been estimated but not ac-5

counted for in the present study. The values of the parameters of the routing function
have been obtained by trial and error using observed streamflow for larger basins. Daily
precipitation data are the main input information. Other meteorological data (tempera-
ture, air humidity, wind speed, solar radiation) are used to account for snow accumula-
tion and melt, and for evapotranspiration using a Penman potential evapotranspiration10

formulation (Bultot and Dupriez, 1985).
The streamflow prediction experiment is performed in two steps. First, a continuous

simulation is made using observed precipitation. This run constitutes the reference
run. Every day of the verification period, the values of the variables of the hydrologi-
cal model are stored and subsequently used as initial conditions for the forecast runs.15

An ensemble streamflow is then made using the precipitation predicted by each of
the 50 members of the ECMWF Ensemble Prediction System as input. For all other
weather variables, the input data assume their observed values. Besides this ensem-
ble streamflow, three separate predictions are made: the first using precipitation from
the “operational” forecast from ECMWF obtained with a NWP at a higher horizontal20

resolution (∼50 km); a second, with the “control” run of EPS, i.e. with the same NWP
as EPS but without any perturbation of initial conditions; finally, a third, with the mean
of the ensemble.

Two catchments are studied (Fig. 1). They belong to the two main river basins in Bel-
gium and possess contrasted hydrological regimes. The Demer at Diest (1775 km2) in25

the River Scheldt Basin is located in the loamy region of Hesbaye and in the sandy
region of Campine. This catchment is almost flat and covered with crops and pas-
tures. The Ourthe at Tabreux (1616 km2) in the River Meuse Basin is located in the
Ardennes which consists of a plateau with deep valleys, where a bedrock of shale and
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sandstone is covered with thin stony loamy soils. The dominant covers are coniferous
forests and pastures. Precipitation and streamflow averages based on measurements
during 1971–2000 in the two catchments are displayed in Figs. 2a and b. Daily mean
discharge values (m3s−1) have been converted into daily runoff (mm day−1) to make
easier comparison with rainfall and streamflow of catchments of different area. Precip-5

itation occurs evenly throughout the year. Due to the higher elevation of the Ardennes,
precipitation over the Ourthe catchment is greater than over the Demer catchment,
and the difference is on average slightly larger during winter. The smoother stream-
flow regime of the Demer is characteristic of a high baseflow contribution due to the
high infiltration rate and the presence of aquifers. The larger seasonal differences10

of the streamflow regime of the Ourthe results from a larger contribution of surface
flow. Precipitation and streamflow thresholds that will be used in the verification of
the probabilistic forecast are computed from the data observed during 1971–2000 and
summarized on Figs. 2c and d.

Note that the water balance model does not take water management actions into15

account. For the Demer basin, decisions to be taken by flood risk managers include
diverting part of the streamflow into flood control reservoirs with a total capacity of
about 11.106 m3 (AMINAL – afdeling Water, 2004). On Fig. 3, the cumulated volume
of water diverted into the main reservoir during 2002 is compared with the streamflow
measured downstream at Diest and with the reference simulation. The effect of filling20

the reservoir and releasing with some delay the stored water may be noticed for the
February and the November events. For this reason, in the following, the streamflow
forecasts are compared to the values given by the reference simulation.

The autocorrelation function of simulated streamflow for the two catchments has
already been compared to the ones for the observed values for subcatchments and25

for the Ourthe (Roulin and Vannitsem, 2005). During winter, the decorrelation time
i.e. the lag for which the autocorrelation function drops below e−1 is around 10 days
for sub-catchments during winter and the autocorrelation function is well reproduced
by the water balance model. During summer, the decorrelation time varies from 3 to
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more than 10 days for subcatchments of the Demer. For the Ourthe, the decorrelation
time is even longer but it is not properly reproduced beyond 2 days. As a consequence
of the daily time step and parameter simplification, runoff generated by precipitation
falling over the catchment does not reach the outlet until the next day. For this reason,
precipitation observed on day D starts to contribute to the simulated streamflow at D+15

and precipitation forecast for D+1 is routed to the outlet starting at D+2 etc. Therefore,
we will begin verification of the streamflow forecasts at D+2.

3 Validation measures

This study will restrict the verification to methods suited for probability forecasts. These
methods provided mainly from the field of meteorology even if the first validation mea-10

sure, the Brier Skill Score (Brier, 1950), has been recently applied in hydrology (Bradley
et al., 2003, 2004; Roulin and Vannitsem, 2005). The second method, a simple de-
cision model (Richardson, 2000) allows the hit and false alarm rates of the ensemble
prediction system to be translated into an economic value of the forecast.

3.1 Brier skill score and derived measures15

In this study, the probability forecast that the streamflow will exceed a threshold is
estimated as the relative frequency of occurrence of this event among the ensemble
members. The ensembles are taken at “face value” (e.g. Richardson 2001; Katz and
Ehrendorfer 2006) and the uncertainty due to the finite size of the ensembles is ignored.
This estimated forecast probability (0≤f≤1) is compared with the observation x that the20

streamflow has exceeded this threshold (x=1) or not (x=0). In the framework of the
distribution oriented (DO) approach to forecast verification, the forecast quality consists
in the totality of statistical characteristics embodied in the joint distribution of forecasts
and observations p(f , x) (Murphy and Winkler, 1987; Murphy, 1997). The first aspect of
the forecast quality is the accuracy measured by the Brier score (Brier, 1950) or mean25
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square error MSE(f , x). The Brier Skill Score is the fractional improvement in accuracy
of the forecast over climatology:

BSS = 1 −
MSE (f , x)

σ2
x

(1)

where σ2
x=MSE (µx, x) is the variance of the observations in the verification sample

and is a measure of uncertainty; µx is the frequency of occurrence of the event during5

the verification period.
Two different factorization of the joint distribution into conditional and marginal distri-

butions allow to conveniently relate accuracy to other aspects of forecast quality. The
first is the calibration-refinement (CR) factorization:

p (f , x) = p
(
x|f )p (f ) (2)10

In the context of the CR factorization, the mean square error can be written as:

MSE (f , x) = σ2
x + Ef

(
µx|f − f

)2
− Ef

(
µx|f − µx

)2
(3)

where µx|f is the conditional mean of the observed event given the forecast. The
second term of the right-hand side of (3) is a conditional bias and is a measure of
reliability. A forecast is reliable (or well calibrated) if the occurrence frequency of an15

event, for a given forecast value, is close to its forecast probability of occurrence. The
third term is a measure of resolution (or refinement) by which the relative frequency of
an event given a forecast differs from the unconditional mean. The Brier Skill Score
may be expressed as:

BSS=RRES-RREL (4)20

with RRES for relative resolution and RREL for relative reliability. A perfect forecast
would have RRES=1 and RREL=0.
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The second factorization is the likelihood-base rate (LBR) factorization:

p (f , x) = p
(
f |x

)
p (x) (5)

With this factorization, the mean square error can be decomposed as:

MSE (f , x) = σ2
f + Ex

(
µx|f − x

)2
− Ex

(
µx|f − µf

)2
(6)

where µf is the average forecast, µf |x its average given the observation and where σ2
f5

is the variance of the forecasts and is a measure of the sharpness or degree to which
the probability forecasts are close to 0 or 1. The third term of the right-hand side of
(6) is a measure of discrimination or degree to which the distribution of forecasts when
the event occurs differs from the distribution when it doesn’t. The second term is a
measure of the bias conditional to the observation (or type 2 conditional bias). The10

Brier Skill Score may be expressed as:

BSS=1+RDIS+RSH-RTY2 (7)

where RDIS is the relative discrimination, RSH the relative sharpness and RTY2 the
relative conditional bias. Note that both the sharpness and the discrimination are de-
sirables aspects of forecast quality but contribute differently to the MSE.15

3.2 Relative economic value

The benefits gained by using streamflow forecasts depends not only on their skill but
also on the impact of the streamflow on the system to manage as well as on the actions
the user should take to mitigate the consequences. The value of the hydrological
prediction system is studied in the framework of a simple static cost-loss ratio decision20

model whose formulation comes from to Richardson (2000).
In this model, the decision has to be made either to take a protective action again

an adverse event, let’s say a flood event X , or to do nothing. If the event occurs and
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no action has been taken, then a loss L has to be incurred. Taking action has a cost C
whatever the outcome but if the event occurs, a part of the loss, L1 is prevented.

The strategy to be adopted should minimise the expense on the long term. If the
only information available is µ, the frequency of occurrence of the event in the clima-
tological record, the strategy reduces to: either always protect or never. Always taking5

a protective action results in an average expense of C+µ(L−L1) whilst the average
expense of never protecting is µL. Therefore, the optimal strategy consists in always
to act if C+µ(L−L1)<µL1 that is if C/L1 <µ and never to act otherwise. The average
expense is:

Eclimate = min {C + µ (L + L1) , µL} (8)10

If the future were perfectly forecast, it could be possible to take actions only on those
occasions when the event is going to occur; the average expense would be:

Eperfect = µ (C + L − L1) (9)

The information given by actual forecasts may allow to adapt the strategy in order to
reduce the average expense. The reduction of expense is a measure of the value of15

the forecasts. The relative economic value compares the reduction of expense with the
reduction which would be achieved by a perfect forecast as the ratio:

V =
Eclimate − Eforecast
Eclimate − Eperfect

(10)

The decision maker will benefit from the forecast if V >0.
A deterministic forecast of a dichotomous event like “the discharge of the Demer will20

exceed 68 m3 s−1” simply consists in announcing that either it will or will not occur. The
frequency of correct and incorrect forecasts given that the event actually occurred or
not are defined on Fig. 4. The hit rate H of the forecast is the frequency of occurrence
of the event after a correct forecast and the false-alarm rate F is the frequency of
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occasions when the event was forecast but didn’t occur. Referring to Fig. 4 and noting
that µ=f2+f4:

H = f4
/
µ (11)

F = f3
/

(1 − µ) (12)

The average expense of the deterministic forecast system is given with:5

Edeterministic = f2L + f3C + f4 (C + L − L1) (13)

With the definition of the value in Eq. (10), of the expenses given in Eqs. (8), (9) and
(13), and of the hit and false-alarm rate in Eqs. (11) and (12), the relative economic
value of the deterministic forecast can be written as:

V =
min (α,µ) − F α (1 − µ) + Hµ (1 − α) − µ

min (α,µ) − µα
(14)

10

where α=C/L1, the cost-loss ratio, or cost of taking an action expressed as a frac-
tion of that part of the potential loss which is protected by that action. The relative
value depends on the parameter α which characterises the decision making situation,
µ which describes the hydrologic (climatic) context and H and F which quantify the
performance of the forecast system.15

As far as probabilistic forecast is concerned, a decision maker has to choose the
probability threshold pt at which he will take an action. By this choice, the probabilistic
forecast system is changed into a deterministic one. For any value of pt, the relative
economic value of the probabilistic system can be calculated with Eq. (14). For an
optimal strategy, the decision maker will select the probability threshold which results20

in the largest value.

3.3 Value of early warnings

For most of the cost-loss situations, the hydrological ensemble forecast has a positive
relative value until the medium range. How can a manager take advantage of this value
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several days in advance, knowing that the value is greater at shorter range? It was
suggested by Richardson (2000) that “users with more time to prepare for protective
action may be able to reduce the cost of taking it and to reduce α towards the region
where EPS has the greater advantage”. Nevertheless, the situation may be such that
the forecast changes or, if the forecast of high risk persists the following days, actions5

with gradually more implications may be undertaken. In other words, the situation is
more likely to be dynamic rather than static.

An extension to the decision problem described in the previous section is proposed to
investigate the relationships between the probability threshold chosen for the different
forecast days, the costs of successive actions and the value of the forecasts. This10

problem is represented on Fig. 5 as a decision tree. Two stages are considered: a
forecast is emitted, let’s say, six days before an eventual flood event; preliminary action
can be decided accordingly at this first stage; three days later, a second forecast is
performed based on which complementary action can be undertaken; if no action was
decided at the first stage, the same protection can be obtained with a late action at15

a higher cost. Depending upon the actions taken at the two stages and upon the
occurrence of the flood event, different total costs are incurred (Fig. 5). Note that
this dynamic problem is different from other models (e.g. Wilks, 1997) consisting in
a sequence of decision and event where losses can be sustained at each step and
weather forecasts used for decision-making have a fixed range.20

As in the static problem, if the flood occurs and no preventive action has been taken,
the total loss is given by L and from that loss, an amount L1 may be protected by
the preventive actions. If only one action at the second stage is taken, its cost C is
the same as in the static problem to which the dynamic problem will be compared.
If taken sequentially, the actions have costs C′ and C′′ at the first and second stage,25

respectively, such that the advantage of timeliness is at a lower total cost C′+C′′<C.
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The average expense of this decision system is:

Eforecast =
8∑

i=1

fi × Ei (15)

where fi is the frequency of occurrence of the i -th combination of successive forecasts
and outcome and Ei is its associated cost and loss given in Fig. 5. The frequencies
of occurrence depend upon the choice of the probability thresholds at the two stages.5

The couple of thresholds resulting in the minimum average expense is to be selected.

4 Results

4.1 Skill of rainfall and runoff predictions

In the Figs. 6 to 8, measures of the accuracy and other aspects of probability forecasts
quality are summarized for the precipitation over the Demer and for the streamflow of10

the Demer and of the Ourthe. Unlike in Roulin and Vannitsem (2005) these measures
have been calculated over the whole year whatever the season and are presented over
the entire range of thresholds defined by the percentiles (corresponding to Fig. 2).

For precipitation (Fig. 6), the skill is decreasing for increasing precipitation amounts
and for increasing lead times. Nine days in advance, warnings based solely on the15

probability of heavy precipitation are of little use. The most interesting property is that
forecasts of the probability of precipitation are very reliable. Note also that percentiles
below a value of about 20 are not represented and correspond to no precipitation.

The probability that the streamflow exceeds a threshold is forecast with a significant
skill over a wide range of thresholds corresponding to percentiles from 5–10 to about20

95 (Figs. 7 and 8). This skill corresponds largely to the resolution of the forecasts
(RRES) or, equivalently, to their good reliability as seen with the small values of the
relative bias conditional to the forecast (RREL). For high flows, the skill of the Ourthe
is greater than the skill of the Demer. This difference was linked to the faster response
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of the Demer to the precipitation events (Roulin and Vannitsem, 2005), as illustrated in
Figs. 7a and 8a for percentiles above 40. Below 30, the reverse is true. The Demer
is characterized by a large contribution of the aquifers to the baseflow; therefore, the
streamflow of the Demer is more predictable in low flow situations if proper values are
given to the initial conditions of the hydrological model.5

With the LBR decomposition, it can be seen that the skill of the two catchments
behave differently. For the Demer, with increasing value of the threshold, both the
sharpness (RSH) and the discrimination (RDIS) are continuously decreasing whereas
the bias conditional to the observations increases. For the Ourthe, the sharpness is
high from a threshold corresponding to the percentile 10 to around 80 depending on10

the forecast day indicating that the probability forecast are not far from either 0 or 1.
For a low threshold, this good sharpness does not correspond to a good discrimination
and the skill is therefore only moderate. With a threshold value increasing up to a
value corresponding to the percentile 60, the discrimination improves significantly and
the bias conditional to the observation (RTY2) decreases so that the skill increases15

steeply up to a maximum around the percentiles 60 to 80.
The different aspects of the quality of the hydrological ensemble prediction system

are compared with the corresponding aspects of the three deterministic alternatives.
On Fig. 9, the Brier Skill Score and measures derived from the CR and LBR factor-
ization are plotted with the forecast days for a threshold corresponding to the 95th20

percentile. The hydrological ensemble prediction system outperforms any of the three
deterministic forecast systems. Its skill remains significantly positive up to the forecast
day D+9 whereas the skill of the deterministic forecasts vanishes at D+7 for forecasts
using ECMWF “operational” and the EPS control and D+8 for forecasts using the EPS
ensemble average.25

The CR decomposition shows that this difference in skills comes mainly from a bet-
ter resolution. The forecasts of the hydrological ensemble prediction system range
between 0 and 1 and are binned in 0.1 intervals in order to compute the resolution.
The deterministic forecasts are set to either 0 or 1. According to Eq. (3), a better res-
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olution means that the frequency of high flows given the probability forecasts of the
ensemble differs from the unconditional mean to a higher degree than the frequency
given the deterministic forecasts. The bias conditional to the forecasts using the EPS
control or the ECMWF operational precipitation is higher than the corresponding bias
for the EPS ensemble average and for the hydrological ensemble prediction.5

The LBR decomposition shows that the sharpness of the forecasts using ECMWF
operational and EPS control are close to 1 as can be expected for deterministic fore-
casts. For probability forecasts at this high streamflow threshold, the sharpness mea-
sure is not exactly 1 because the unconditional means of the forecasts and of the
observations are not equal (µf 6=µx). Nevertheless, this good sharpness is not asso-10

ciated to a good discrimination. The discrimination of the four systems is almost the
same and decreases with forecast days. Therefore, despite a slightly lower bias con-
ditional to the observations compared to the hydrological ensemble prediction system,
the deterministic system using ECMWF operational and EPS control have less skill.
The superiority of the hydrological ensemble prediction system over the deterministic15

system using the EPS ensemble average has another origin: the sharpness of this de-
terministic system is only moderately larger and the bias conditional to the observation
is slightly larger than for the hydrological ensemble prediction system; combined with
a discrimination of the same order, the skill of the hydrological ensemble prediction
remains significantly better.20

In ensemble forecasting, the choice of perturbed initial conditions is a crucial step
to produce an ensemble with a spread representing properly the uncertainty about the
future state of the atmosphere. In a perfect ensemble, the observations should be taken
as an additional independent realization of the same underlying probability distribution
(Talagrand et al., 1997; Hamill and Colucci, 1997). The histogram can be calculated25

with the positions of observed values among the ensemble. This histogram allows
one to check the statistical consistency of the ensemble and may be used to calibrate
the ensemble (Hamill and Colucci, 1997). In this study, the priority has been given to
preserve the consistency in time of each precipitation scenario of the ensemble. The
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calibration method has been tentatively applied to the output ensemble streamflow
but not reported here in detail. Only a marginal improvement has been obtained by
this post-processing. Indeed, the calibration changes the reliability of the probability
forecasts and not their resolution; since the reliability is already very good – at least
for both cases studied – there is little room for improvement. Future improvements are5

rather to be expected through an increased resolution of the probability forecasts and
such an increase might only follow future improvements of the NWP model.

4.2 Value of streamflow predictions

The relative economic value of the hydrological ensemble prediction system is now ex-
amined for the Ourthe for streamflow exceeding a threshold corresponding to the 95th10

percentile. This value is shown on Fig. 10 for the forecast day D+6 as a function of the
cost-loss ratio. The value is shown for different probability thresholds pt amongst which
the threshold resulting in the largest economic value has to be selected. It can be seen
on this graph that the hydrological ensemble prediction system has a positive value
for most of the cost-loss situations. The optimal probability threshold depends on the15

cost-loss ratio (Fig. 14). The decision maker faced with large potential loss compared
to the cost of protection (small α) will benefit by taking actions even when the forecast
probability is low. On the contrary, in a situation where costly action is to be decided
(high α), the user would benefit from the forecast if she/he decides to act only when
the probability forecast is high. The value of the forecast can substantially drop with20

an inappropriate choice of the probability threshold. The overall value of the hydrolog-
ical ensemble prediction system is shown by the envelope of the different curves on
Fig. 10. To benefit from this value, the decision-maker must have a good perception or
knowledge of his situation and select the appropriate probability threshold.

Note that the highest value of the probability threshold (pt=0.98) is rarely reached25

or exceeded and all these occasions correspond to streamflow higher than the 95th
percentile. The false-alarm rate is therefore zero and it follows from Eq. (14) that the
relative economic value is equal to the hit rate. This is due to sampling limitation. Note
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also that the resolution of the probability thresholds is linked to the size of the ensemble
(Richardson, 2000) and, for the 51 members EPS, the best resolution is achieved with
pt intervals of about 0.02 as plotted on Fig. 10.

The overall relative economic value is compared for the forecast day D+2 to D+9
on Fig. 11 for the Demer. This value is positive in most of the cost-loss situations.5

As the forecast horizon increases, the value for situations where taking an action is
costly decreases more rapidly than for situations characterized by a cost-loss ratio
close to the frequency of occurrence of the damaging event. For α≈µx, where the rela-
tive economic value is optimum, this value remains very high even at D+9. The results
presented in this study may be considered as an upper limit to the skill and relative eco-10

nomic value of the hydrological ensemble predictions because the streamflow forecast
using EPS precipitation is compared to the streamflow simulated using the observed
precipitation. For the Demer, due to the flood control actions, the streamflow forecast
has not been compared to the observed streamflow.

The overall relative economic value for the Ourthe is shown on Fig. 12. At D+3,15

this value is larger for the Ourthe than for the Demer as was shown for the skill. The
relative economic value has also been estimated on the base of the observed values
of the streamflow. Due to errors in both input data and hydrological modelling, the sim-
ulated streamflow at the start of the forecast differs from the observed streamflow. At
D+3, the comparison of the probability forecast with the observed streamflow results20

in a relative economic value which is much lower than the values based on the refer-
ence streamflow. Nevertheless, after several days, uncertainties about the precipitation
forecasts themselves dominate and the differences between the verification measures
made with the reference and the observed streamflow are reduced. A further develop-
ment could complement this hydrological ensemble forecast system with an updating25

module (e.g. Goswami et al. 2005).
The overall relative economic value of the hydrological ensemble prediction is com-

pared with the value of the deterministic alternatives on Fig. 13, for the forecast day
D+6. The superiority of the ensemble lies on the flexibility allowed by a proper choice
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of the probability threshold. The advantage of using hydrological ensemble predictions
for decision-making is the highest for the situation with low cost-loss ratio, where the
optimum probability threshold is also low and whose use is made possible if the en-
semble size is sufficient. For values of α lower or equal to µx, the advantage extends
for ensemble predictions made at the medium-range over deterministic forecasts emit-5

ted within a shorter delay (e.g. comparing D+9 on Fig. 12 with D+6 of any deterministic
forecast on Fig. 13).

4.3 Value of early warnings

Numerical examples of the dynamic decision model are given with fictive costs and
losses but based on the probability forecast six days and three days in advance that10

the streamflow of the Demer exceeds the 95th percentile during the verification period.
In the following, the day when a terminal consequence is analyzed will be referred as
T and the days when the successive forecasts are emitted will be referred as T-6 and
T-3. In these examples, the reduction of cost is set to the total cost of the two actions
taken successively is set to C′+C′′=C−0.05L1. The model is applied for a range of15

cost-loss ratio (α=C/L1) from 0.10 to 0.95. Two cases are tested: in the first case,
the cost of the earlier action is taken fixed (C′=0.01 L1) for the whole range of α, the
cost-loss ratio of the corresponding static problem, whereas in the second case, the
costs of both actions are proportional (4C′=C′′).

The values of the couples of thresholds selected for the different cost-loss ratios are20

compared with the values of the single threshold of the static problem on Fig. 14. The
thresholds for the probability forecast at T-3 for the dynamic and static model follow
almost the same relationship with α. The more expensive the action compared to the
protected loss, the higher the probability threshold to optimise the value of the forecast
system. For a perfectly reliable forecast in the static problem, the optimal threshold25

would be equal to α (Richardson, 2000). The threshold for the probability forecast at
T-6 follows a different relationship than the threshold at T-3 and depends upon the rate
of the cost of the action at the first stage, C′, with α (excepted at α=0.15 where both
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cases have the same C′). For a cost constant with α, the threshold increases slowly
with α and is always much lower than the threshold at T-3. For a cost C′ proportional
to the total cost, the threshold increases steeply with α, and, in the range of α from 0.2
to 0.8, it is greater than the threshold at T-3, even if the cost C′ at T-6 in this case is still
much lower than the cost C′′ at T-3.5

The relative economic values of the hydrological ensemble predictions for the Demer
in the framework of the static problem and of the dynamic problem are presented on
Fig. 15. In this figure the relative economic value is obtained with Eq. (10) in which the
forecast system is compared to two other decision systems – the first with only clima-
tology as information and the second with perfect forecasts. For ease of comparison,10

in these two decision systems, the cost of action is set to C, for both the static and the
dynamic problems. For a same reduction of the total cost, a cost of an earlier action
fixed to a low value gives the highest advantage.

The preliminary results of a dynamic problem in the context of medium-range hy-
drological predictions presents numerical results based on hindcasts for the Demer15

catchment. The event chosen is a streamflow greater than a threshold defined by the
95th percentile. In the hindcast period, the frequency of occurrence of this event is
0.07. The results are presented for a range of cost-loss ratio from 0.10 to 0.95. Further
study will focus on low cost/loss ratios, where the relative economic values are likely to
be the highest and will have to take uncertainty into account. A formal analysis of this20

dynamic problem will also broaden the scope of possible conclusions towards a better
use of medium-range forecasts. Finally, it is worth investigating the plausible values to
be assigned to the parameters of the economic model in order to meet the operational
context.

In this dynamic model, the second stage has been defined at T-3. The value of the25

early warning could also be compared with the situation at T for which decision are
taken, in most operational river management centers, on the base of the values of pre-
cipitation and streamflow measured in real time. Likewise, the streamflow threshold
has been selected so that a sufficient number of events are included in the verifica-
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tion period and that statistically meaningful conclusions may be drawn. Clearly, the
choice of the streamflow threshold should be addressed and included in the study of
the interrelationships between probability threshold, forecast lead-time and value.

5 Conclusions

A hydrological ensemble prediction system has been developed based on the use of5

ECMWF EPS in a hydrological model. This system can be improved with the choice of
a timestep of 6 h at which EPS precipitation forecasts are available, or with the addition
of a streamflow updating model and the inclusion of flood control rules. The benefit
would be expected in the first forecast days beyond which uncertainties on precipitation
predictions dominate.10

This hydrological ensemble prediction system has been tested on two Belgian
catchments with contrasted hydrological cycle, by performing extensive hindcasts with
archives from ECMWF for the period from November 2000 to January 2006, which
corresponds to the operational NWP model with ∼80 km spatial resolution. This study
focuses on the skill and the relative economic value of the probability forecasts.15

Ensemble forecasting requires the adaptation of the management rules towards the
use of probability forecasts instead of deterministic discharge forecasts. This implies
also an increased number of simulations with hydrological/hydraulic modelling systems.
For comparison, alternative deterministic hindcasts have been also performed on the
base of either the archives of the ECMWF operational deterministic runs at higher20

spatial resolution or on the base of the mean of EPS ensembles or on the control (not
perturbed) run of EPS.

The value of early warning and the issue raised by the choice of probability thresh-
olds has been tackled with a simple dynamic two-stage decision model. Numerical
example have been given with fictive cost and loss amount, but with forecast probabil-25

ity and event occurrence taken from the hindcasts for the Demer. It has been shown
that the optimum value is obtained with a probability threshold for the decision at the
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first stage depending upon both the cost of the preliminary action and the total cost
to prevent damage; the probability threshold for the decision at the second stage has
been found similar to the corresponding threshold in the static problem.

The hydrological ensemble predictions have greater skills than deterministic ones.
Their greater relative economic value for many users lies on the choice of a probability5

threshold appropriate to the decision-making situation.

Acknowledgements. I thank G. Demarée for his continuous encouragements and S. Vannitsem
for discussions and comments.
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Fig. 1. Location map of the Demer and Ourthe catchments in Belgium; grid points (+) of
EPS archives corresponding to the T255 NWP in use from November 2000 to January 2006 at
ECMWF.
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Fig. 2. Regime of observed daily precipitation (a) averaged over the Demer catchment (contin-
uous line) and over the Ourthe catchment (dotted line) during 1971–2000, regime of observed
streamflow (b) of the Demer during 1981–2000 and of the Ourthe during 1971–2000; corre-
sponding probability distribution of precipitation (c) and streamflow (d); the maxima are 66 and
57 mm day−1 for precipitation of the Demer and Ourthe, respectively and the corresponding
maxima for the streamflow are 3 and 20 mm day−1.
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Fig. 3. Management of the Demer during 2002; (a) cumulated volume of water (in 106 m3)
diverted in the Schulensmeer reservoir (by courtesy of K. Cauwenberghs, AMINAL – afdeling
Water); (b) daily streamflow of the Demer at Diest; the continuous line corresponds to the
measured values (data from HIC) and the dashed line to the “reference” values i.e. simulated
using observed precipitation.
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Fig. 4. Decision tree for a simple static decision problem: a decision A is taken on an action at
the cost C on the base of forecast; this action is aimed at preventing an amount L1 of the loss
L that otherwise should be incurred if the event X happens; the expenses Ei are given for each
combination i of forecasts and outcome occurring with frequency fi .
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Fig. 5. Decision tree for a simple two-stage dynamic decision problem: a decision A′ is taken
on a preliminary action at cost C′ on the base of a first forecast; later, depending on a second
forecast, a decision A′′ is taken on either a complementary action at cost C′′ or a late action at
cost C in case no action had been decided at the first stage; these actions at total cost C′+C′′ or
at cost C are aimed at preventing an amount L1 of the loss L that otherwise should be incurred if
the event X happens; the expenses Ei are given for each combination i of successive forecasts
and outcome occurring with frequency fi .
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Fig. 6. Brier Skill Score (a) of the EPS precipitation for the Demer at D+3 (solid line), D+6
(dashed line) and D+9 (dash-dotted line); CR decomposition: relative measures of resolution
(c) and reliability or conditional bias (e); LBR decomposition: relative measures of discrimina-
tion (b), sharpness (d) and type 2 conditional bias (f).
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Fig. 7. Brier Skill Score (a) of the hydrological ensemble predictions for the Demer at D+3 (solid
line), D+6 (dashed line) and D+9 (dash-dotted line); CR decomposition: relative measures of
resolution (c) and reliability or conditional bias (e); LBR decomposition: relative measures of
discrimination (b), sharpness (d) and type 2 conditional bias (f).
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Fig. 8. Brier Skill Score (a) of the hydrological ensemble predictions for the Ourthe at D+3 (solid
line), D+6 (dashed line) and D+9 (dash-dotted line); CR decomposition: relative measures of
resolution (c) and reliability or conditional bias (e); LBR decomposition: relative measures of
discrimination (b), sharpness (d) and type 2 conditional bias (f).
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Fig. 9. Brier Skill Score (a) of the probability forecast that the streamflow of the Ourthe will
exceed a threshold corresponding to the 95th Percentile; calibration-refinement decomposition:
relative resolution (c) and relative reliability (e); likelihood-base rate decomposition: relative
discrimination (b), relative sharpness (d) and relative type 2 conditional bias (f); the solid line
corresponds to the hydrological ensemble, the dashed line correspond to the prediction using
ECMWF deterministic forecast, the dotted line, using the EPS control and the dash-dotted line,
using the EPS ensemble average (verification period 2000–2004).
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Fig. 10. Relative value V of the hydrological ensemble prediction for different cost-loss ratios
α: probability that the streamflow of the Ourthe will exceed a threshold corresponding to the
95th Percentile on D+6; the different curves correspond to different probability thresholds pt;
the overall value is shown with the envelope (thick line).
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Fig. 11. Relative value V of the hydrological ensemble prediction for different cost-loss ratios α:
probability that the streamflow of the Demer will exceed a threshold corresponding to the 95th
percentile for the forecast days D+3, D+6 and D+9; the probability forecasts are compared
with 1 or 0 if the “reference” streamflow exceeds the threshold or not.
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Fig. 12. Relative value V of the hydrological ensemble prediction for different cost-loss ratios α:
probability that the streamflow of the Ourthe will exceed a threshold corresponding to the 95th
Percentile for forecast days D+3, D+6 and D+9; continuous line: the probability forecasts are
compared with 1 or 0 if the “reference” streamflow exceeds the threshold or not; dashed line:
the comparison is made with the observed streamflow.
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Fig. 13. Relative value V of the hydrological ensemble prediction (solid line) for different cost-
loss ratios α: probability that the streamflow of the Ourthe will exceed a threshold correspond-
ing to the 95th Percentile on D+6; the dashed line is the relative value of a deterministic predic-
tion obtained by using the ECMWF deterministic forecasts; the dotted line corresponds to the
prediction with the control run of EPS and the dash-dotted line to the prediction with the EPS
ensemble average (verification period 2000–2004).

1404

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1369/2006/hessd-3-1369-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1369/2006/hessd-3-1369-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 1369–1406, 2006

Skill and value of
hydrological

ensemble predictions

E. Roulin

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 14. Probability thresholds resulting in optimal relative economic values for different cost-
loss ratio α; the continuous line corresponds to the static decision problem (α=C/L1); the other
lines correspond to the two-stage dynamic decision problem (α=(C+C′′)/L1): the dashed and
the dash-dotted lines are for the thresholds used at the first and second stage, respectively; two
cost sharing figures are considered: (a) C′/L1=0.01 and (b) C′=C′′/4; both dynamic problems
have a total cost reduced compared to the static problem (C′+C′′=C−0.05L1); example of the
Demer with the 95th percentile as streamflow threshold.
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Fig. 15. Relative value of the hydrological ensemble prediction for different cost-loss ratio
α=C/L1; the continuous line corresponds to the static problem (T-3); the dashed line corre-
sponds to the dynamic problem with a cost at the first stage (T-6) set to C′/L1=0.01; the mixed
line corresponds to the dynamic problem with costs at the two stages proportional: C′=C′′/4;
same example as Fig. 14.
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